arXiv:2201.09877v2 [quant-ph] 7 Jun 2022

Quantum Computing 2022

James D. Whitfield* T, Jun Yang*, Weishi Wang*, Joshuah T. Heath*, and Brent Harrison*
* Department of Physics and Astronomy, Dartmouth College
Hanover, New Hampshire, USA 03755
TAWS Center for Quantum Computing
Pasadena, California, USA 91125

Abstract—Quantum technology is full of figurative and literal
noise obscuring its promise. In this overview, we will attempt
to provide a sober assessment of the promise of quantum
technology with a focus on computing. We provide a tour of
quantum computing and quantum technology that is aimed to
be comprehensible to scientists and engineers without becoming
a popular account. The goal is not a comprehensive review nor
a superficial introduction but rather to serve as a useful map to
navigate the hype, the scientific literature, and upcoming press
releases about quantum technology and quantum computing. We
have aimed to cite the most recent topical reviews, key results,
and guide the reader away from fallacies and towards active
discussions in the current quantum computing literature. The
goal of this article was to be pedantic and introductory without
compromising on the science.

The field of quantum technology, especially quantum com-
puting technology, has emerged as an active area of academic
and corporate research and development. It has also emerged
as an area of heavy investment by companies, governments,
and private investors worldwide. For example, worldwide
investment in 2021 was estimated at $24.4 billion with the
United States appropriating $1.2 billion over five years through
the National Quantum Initiative Act [1]], [2]]. So far this global
investment has paid off in rampant technological progress,
flagship experiments, and major intellectual developments.

Quantum technologies are the detectors, devices, and com-
munication systems that rely on uniquely quantum resources,
and quantum computing is the use of these quantum tech-
nologies to speed up or otherwise improve solutions to com-
putational tasks and problems. The encapsulation of quantum
mechanics has yielded a number of quantum technologies
useful for storing and manipulating quantum information.
Taking the position that information is physical [3]], the objects
carrying or storing that information may exhibit uniquely
quantum behavior and then we refer to the information stored
as quantum information. If we consider the smallest unit
of information as a bit taking values of zero or one, then,
similarly, the smallest unit of quantum information is the qubit
(or quantum bit).

In Section [l an overview of key modern quantum tech-
nologies is given. The theory driving these devices is given
in Section M Our presentation of quantum mechanics is
somewhat novel in that we begin with the quantum state as
a quantum probability density matrix extended directly from
ordinary probability density vectors. These key ideas prepare
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for Section [l where we introduce the gate model of quantum
computation and some equivalent formulations. In Section
[Vl we discuss the claims and counter-claims of quantum
primacyﬂ. Algorithms for quantum computers are discussed
in Section [V] where we have provided an overview of the
quantum algorithms literature, including the quantum singular
value transformation framework. In the last section, Section
we give an outlook on quantum technology including next
steps for the reader including some sample code.

I. QUANTUM TECHNOLOGIES

Conventional computerSE rely on semi-conductor technolo-
gies where electrical currents are the primary information
carriers. Quantum computing technology is far more diverse
in that there is a wider range of physical systems used as
information carriers. In this section, we focus on technologies
for realizing quantum information carriers that have received
the most attention and traction. This section gives a high-
level overview but for a more comprehensive view of quantum
computing technologies see [8], [9].

We will begin with the most widely adopted technology
thus far, namely superconducting qubits. Then we turn toward
quantum computing systems where individual atoms are used
as information carriers. Although not yet commercially rele-
vant, nuclear magnetic resonance (NMR) quantum computing
is included for historical and pedagogical reasons. From there
we give mention to quantum light (photons) used to store
and manipulate quantum information. Finally, this section will
close with a brief look at other technologies that may be
relevant in the coming years.

Superconducting qubits are the most widely available de-
vice architecture for quantum computing and have received
the most commercial attention thus far [10]], [L1]. The core
technology is the Josephson Junction [12] consisting of two

'We have chosen the term quantum primacy rather than quantum supremacy
originally defined in [4]. Both terms are used in the literature to refer to the
same idea. However, there has been some controversy and debate about this
naming convention in the literature and popular science press [S], [6], [7].
Quantum advantage is usually reserved for quantum computers merely edging
out conventional computers on tasks of practical interest. This idea is slightly
different from the original idea of quantum supremacy / primacy where the
computational separation should be distinctively large.

2Qur preference is to use the term ‘conventional’ computer rather than
‘classical’ computer since the production and fabrication of devices at the
nanometer scale requires domain knowledge implicitly based on quantum
mechanics even if quantum coherence is not used in the operation of the
resulting device.


http://arxiv.org/abs/2201.09877v2
james.d.whitfield@dartmouth.edu

superconducting metals separated by an insulator. The super-
conducting state [13|] requires low temperatures provided by
dilution refrigerators. There are numerous ways to combine
inductors, capacitors, and Josephson junctions into varying
circuit designs [14] and functionalities [11]. The transmon
design [15] (a circuit consisting of a Josephson junction in
parallel with a capacitor) is widely used as part of different
qubit architectures pursued at companies such as Amazon, D-
Wave Systems, Rigetti Computing, Google, and IBM.

Now, superconducting quantum computing devices with
over 50 interacting qubits are becoming increasingly available
[L6], [17], [18]. The discussion of the flagship quantum pri-
macy experiments conducted with these devices is collected in
Section Presently, we continue with atom-based quantum
computing platforms.

Atomic physics gave the earliest experimental evidence of
quantum theory; thus, the use of atoms as quantum information
carriers is not so surprising. Much more surprising, however, is
the level of controllability that has been demonstrated to date
[19], [20]. First, we consider ion trap quantum computing then
neutral atom quantum computing.

ITon trap quantum computing manipulates microscopic crys-
tals composed of a handful of ionized atoms [21]]. Each ion
is addressed optically to isolate and control individual qubits
of quantum information. Vibrations within the micro-crystal
allow for controllable interactions between the ions [21],
[22], [23]. Although commercially available ion trap quan-
tum computers are smaller than superconducting devices, the
control over the quantum state is typically greater, allowing
for experimental demonstration of quantum simulations [22]
and quantum error correction [23].

Neutral atoms are trapped and manipulated using optics.
Optical tweezers use laser light to trap and arrange the atoms
into a 2D array [24]. The atom-atom interactions are mediated
using the Rydberg excitations of electrons. When an electron
is excited into a Rydberg state, the electron is far from the
atomic nucleus but nonetheless remains bound to the atom.
An apt analogy of the excited electron in a Rydberg state is
that of a very distant but still gravitationally bound satellite
of earth e.g. Halley’s comet. The large extent of the electron
in the Rydberg state can be used to mediate the multi-atom
interactions. Early experimental setups only allowed model
condensed matter systems to be tested [25] but recent progress
has resulted in far more general quantum computing devices
[26], [27].

In Nuclear Magnetic Resonance (NMR), the quantum spin
of nuclei in a strong applied magnetic field is accessed and
manipulated with microwave pulses [28]. Although not widely
pursued at the industrial level, NMR quantum computing has
important conceptual significance. Many of the key quantum
computing concepts were first uncovered in this context and
many of the first experimental implementations were done
using NMR quantum computing [29], [28].

While light sources are important for manipulating super-
conductors and controlling atomic systems, quantum proper-
ties of light can also be used for computational gain. Each

unit of light (a photon) has two orthogonal directions for its
polarization which can be manipulated quantum mechanically.
However, the photons must be emitted in a highly correlated
state before manipulation [30]. This process of obtaining
sufficiently correlated units of light is probabilistic, but can be
heralded (i.e. a secondary flag is able to indicate a successful
generation attempt). By multiplexing entanglement generation
trials, companies such as PsiQ [31]] and Xanadu [32] as well as
national collaborations are attempting to create quantum com-
puters with light as the primary information carrier. Photons
are also called ‘flying’ qubits since they can be used to couple
distant quantum devices for computational or cryptographic
purposes. Unlike some other quantum information paradigms,
cryogenic temperatures are not needed.

Lastly, it is worth mentioning defect-based quantum com-
puting. Here, defects in a crystal, like diamond, can be used to
store and manipulate quantum information. Nitrogen vacancy
defects in diamond have seen the most development, but other
defects like silicon in diamond are also being explored [33].
The implantation of these vacancies as well as isotopic purity
are difficult to control and have prevented defect-based quan-
tum computing devices from reliably storing large amounts
of quantum information. To date, the primary technological
significance of nitrogen vacancy centers has been in the area
of quantum sensing applications [34]].

Following this rapid survey of devices used in quantum
technology, we now turn to the theory. We will strive to give
the principles behind the quantum theory of these devices
and of quantum computing more broadly. We will begin with
the probability-first approach to quantum mechanics [35]. Our
introduction to quantum technology is aimed to allow engaged
and knowledgeable readers opportunities to incorporate their
own expertise. Similarly, our approach to quantum theory
will allow readers to extend their analytical understanding of
probability theory to quantum theory. This is a novel approach
as compared to standard introductions e.g. [36].

II. QUANTUM THEORY

For our introduction to quantum theory, we will begin with
the notion of a probability density vector p’ with components
p; that correspond to the probability of the ith event occurring
upon measurement, see Fig. [l Note that any concept of mea-
surement compatible with probability will also be compatible
with the notion of quantum states discussed below. Probability
vectors must satisfy the following three properties to maintain
a sane interpretation of probability [37]:

Normalization: Pl =2 pil =1 (1a)
Real valued: p; is a real number (1b)
Positive semi-definite: p; >0 (1c)

To derive possible stochastic transformations, these mathemat-
ical properties constrain what is possible. Pursing probability
theory by considering these constraints without concern for
their origins is the essence of a kinematic approach. We will
take this approach to quantum after introducing the quantum
constraints extending Eq. (I).



For quantum states, we can analogously define the quantum
probability density matrix, p, as the generalization of the
probability density vector with the following properties:

[l = Trlpl = 22;1pial = 1 (2a)

p=p" (2b)
Z p& >0 forall Z (2)

Normalization:
Real-valued spectrum:

Positive semi-definite:

Here, 1 indicates the conjugate transpose whereby (AT)pq =
A, and (a+bi)* = a—bi with i*> = —1. These mathematical
extensions ensure that the diagonal of the quantum state, no
matter how the matrix is represented or measured, remains
a valid probability density vector. The kinematics of the
quantum states then follow directly from maintaining these
constraints to preserve a proper interpretation of the quantum
state [335]].

The notion of measurement is inherited from one’s taste in
probability. For instance, when considering quantum theory
applied to estimating outcomes of an experiment, a Bayesian
approach may be most appropriate. But in the case of repeat-
edly measuring the state of a reproducible state, a frequentist
interpretation may be more apt. In principle, the interpretation
of measurements presents no more of a foundational concern
to quantum theory than it does already in probability theory.
The key difference is that the probability density matrix may
appear differently depending on the set of states being used
to represent (and to measure) the state.

For the smallest comparative example, consider two out-
comes: Outcome 0 and Outcome 1. The probability of getting
Outcome 0 is given by a real number between values zero
and unity. This is represented by the red line in Fig. [l The
possible quantum states (according to the constraints above)
are all possible vectors within the sphere. The projection of the
quantum state onto the probability axis gives the probability
of obtaining an outcome corresponding to the event labelled
at the positive endpoint of the probability line.

In quantum theory, we can select the orientation of the
measurement as any line of probability through the Bloch
sphere. For probability theory, the only allowed change of the
measurement orientation is a permutation of the events. This
would correspond to considering the probability of realizing
Outcome 1 instead of Outcome 0. Those fluent with matrix
analysis [38]], will recognize that permutations are a discrete
subset of the continuous orthogonal group which is itself a
subset of the unitary group of transformations.

As an example of changing the quantum measurement
orientation, consider the green probability line along the X-
axis in Fig. Ik has two Outcome + or Outcome —. This new
line of probability corresponds to obtaining the Outcome 4.
For any qubit state, we can obtain the outcome probability
using the projection of the state on the green axis. An example
is depicted by the dot placed along the green axis.

It is useful to note that the rotation of the state (with a fixed
measurement orientation) and the rotation of the measurement
basis (with a fixed state) are effectively the same. In the
language of vector kinematics, the two types of rotations

Outcome 0 Outcome O Outcome O

p=0.75 P

Outcome 1

Outcome 1 Outcome 1

(a) (®) (©

Fig. 1. In sub-figure (a), we visualize the p, the probability of obtaining
Outcome 0, as a point along a line from zero to one. This picture is generalized
as a Bloch sphere in sub-figure (b) used to visualize quantum probability
distributions. Quantum probability distributions, p, are vectors within the
unit sphere. In sub-figure (c), the projection of the state p in two different
measurement bases with the red axis corresponding to measurement in the
Z basis. The two outcomes along the green axis are canonically labelled
as Outcomes + and the project in green gives the probability of obtaining
Outcome + in the X direction.

are termed active and passive rotations respectively [39]. In
quantum physics, these two types of rotations are termed the
Schrodinger and Heisenberg pictures [40].

For a concrete example of changing the measurement basis,
consider the Hadamard transformation as given in Table [I
This operation rotates the Z-axis of the sphere by 90° to obtain
states in the X -Y plane. The probability of obtaining outcome
zero or one is half since all states in the X-Y plane project
to the midpoint of the Z probability axis. The Hadamard
transform plays a special role in many quantum algorithms
for its use in preparing quantum states with high coherence.

From linear algebra [41]], we know that there always exists a
basis for measurement in which the quantum probability den-
sity matrix is diagonal and, consequently, is just an ordinary
probability density vector. This basis is called the eigenbasis
and such a basis always exists for probability density matrices.
The eigenbasis is the measurement basis in which coherences
are not necessary to describe the state. The basis states for
this measurement are called eigenstates and the probabilities
are called eigenvalues. In this measurement basis, there is no
essential difference between a probability density vector and
a probability density matrix other than the organization of the
probability values into a vector or a diagonal matrix.

The off-diagonal elements of the quantum probability den-
sity matrices are called coherences and are allowed to take
values from the complex field of numbers so long as the
state remains consistent with the kinematic constraints of
Eq. @). Quantum theory differs from ordinary probability
theory through the use of these off-diagonal degrees of free-
dom (called coherences) that are generated after certain quan-
tum operations. These coherences disappear as the system’s
behavior becomes less quantum and more akin to standard
probability theory. The process of losing coherence is de-
fined as decoherence and is the major stumbling block for
technological realizations of quantum devices. Decoherence
in experimental quantum devices often appears due to device
control errors and unwanted interactions with the environment.

The discussion of quantum theory has thus far focused only
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Fig. 2. There are two bases that Alice and Bob may measure: the 0-1 basis
(on the Z-axis of probability shown in red) and the & basis (measured along
the X-axis of the Bloch sphere shown in green). After Alice has chosen her
basis and obtained the outcome listed on the left column, Bob cannot obtain

the outcome listed on the right no matter which basis he chooses to measure
in.

on the kinematic differences between quantum and probability
theory. However, the critical difference between quantum and
probability theory is how correlations are treated. In ordinary
probability, if we consider a probability density vector asso-
ciated with two random variables, say P45, then we can say
the variables are correlated if pap # pa X pp. That is, if we
cannot write the joint density as the product of two different
densities. In quantum mechanics, the same idea of correlated
states leads to definitions of the type: pap # pa ® pp where
we have used the appropriate generalization of the Cartesian
product for quantum probability density matrices known as the
Kronecker tensor product.

Entanglement is a key distinguishing feature of quantum
computation. Ordinary probability allows for correlated vari-
ables, but the use of coherence allows for the two systems A
and B to be more strongly correlated than is otherwise pos-
sible with two probabilistic systems. This excess correlation
available to quantum systems is called entanglement [42]], [43],
[44]. An important example of an entangled state is the Bell
state defined and discussed further in Fig.

Without high entanglement, quantum computers are not
more powerful than conventional computation [45] but it
should be noted that entanglement is necessary but not suf-
ficient for quantum computation (as per the matchgate and
Clifford gate sets discussed in Section [[IIl). The insights from
the quantum information community have led to great ad-
vances in conventional computing through the study of matrix
product states and more general tensor network states [44],
[43], [46]]. The key insight is that the compression and efficient
manipulation of the quantum state becomes possible on con-
ventional computers when the entanglement remains low [44],
[45], [43]. By contrast, highly entangled states can be used
to demonstrate violations to the local realism hypothesis [47]
using Bell’s inequality [48], [49]]. Because of the violation of
local realism, these highly-entangled states are also useful for
communication security [S0].

A. Quantum wave functions

In this brief introduction to quantum theory, we have not yet
mentioned the Schrodinger equation nor wave functions. In-
stead, we have focused on quantum probability density matri-
ces and their kinematics. If we followed historical and standard
approaches, we would have begun with wave functions, linear
algebra, and differential equations. The notion of quantization
might have arisen as a consequence of solving a linear
second-order differential equation. Note that superposition and
quantization feature in sound and heat waves, in classical
electromagnetic theory, and many connected mathematical
situations that are not related to quantum mechanics. In order
to keep the discussion focused on the essentials of quantum
theory, we instead mention wave functions as a special case
of the quantum probability density matrices, so called pure
states.

Wave functiond] are quantum probability densities cor-
responding to a quantum state with deterministic outcome
in at least one measurement direction. That is, there is a
measurement direction where the probabilistic outcomes are
describable as p; = (1,0,0,0,...0)” corresponding to vectors
of unit length in Fig. [l In this case, the quantum probabil-
ity density matrix is called pure and satisfies the projector
condition: p? = j. In the case of a pure quantum state, the
quantum density matrix simplifies and can be characterized by
a single vector 1/) called a wave functiorfl. Note that in every
measurement basis except the eigenbasis of the probability
density matrix there will be coherences. As these coherences
are lost with respect to any other basis, the state will no longer
be describable by a single vector 1/) and the correct description
is given by the quantum probability density matrix formalism.

In the next section, the choice between the wave function
vectors and the more general quantum probability density
matrices is not forced. This is because most quantum com-
puting gate operations are considered to be noiseless unitary
transformations. In the case of a single qubit, the unitary
transformations correspond to rotations of the Bloch sphere
vector without changing its length. More technically, the
unitary matrices do not change the eigenvalues of the quantum
probability density matrix. Consequently, if the quantum state
is pure and there is only one non-zero eigenvalue, unitary
operations will not decrease (nor increase) the purity.

B. Quantum states spaces compared to probability event
spaces

In deterministic computing, the probabilities are enforced
to be either zero or one; however, to extend this notion to
quantum information theory, it is useful to think of the bit as
taking values with some probability p. By beginning with this
outlook, we can avoid misleading arguments about the size of

3Here we use standard terminology although we only consider wave
functions as vectors, i.e. 117, rather than functions, i.e. ¥ (z).

“Note that when there is a basis where 77 appears, then the quantum
probability density matrix has only one eigenvector corresponding to the lone
non-zero eigenvalue. This allows us to write p = JJT with 1/7 defining the
wave function.



the quantum state space. Regardless of whether we have n bits
or n qubits, we have 2" possible basis states. In the case of
n bits, we can describe the full state with a probability vector
containing 2" real-valued entries. For example, when n = 3

prob(X = 000)
prob(X = 001)
prob(X = 010)
L | prob(X =011)
p= prob(X = 100) )
prob(X = 101)
prob(X = 110)
prob(X = 111)

Due to the normalization condition, at most 2™ — 1 real
values are needed. The quantum system, by contrast, cannot
be described by a probability vector alone. Nonetheless, upon
measurement, for n qubits there will be only 2" possible
outcomes. Thus, the distinction between n qubits and n bits
is deeper than a simple counting argument.

The key takeaway from this section on theory is that
quantum coherence and quantum entanglement are the essen-
tial resources that quantum devices exploit for computational
gains. One frequently encounters misleading claims about
superposition or about the size of the quantum state space as
reasons for quantum computational gain. By beginning with
and comparing against probability theory rather than classical
mechanics, we hope it is clear that superposition and counting
arguments do not account for the power of quantum compu-
tation. Moreover, this probability-first approach has allowed
us to sidestep philosophical discussion of measurement and
proceed to the essential difference between probability and
quantum theory. Armed with these basic ideas of quantum
theory, we now turn toward computation beginning with the
models of quantum computing in the next section.

III. MODELS OF QUANTUM COMPUTING

In this section, we will consider the models of computation
used to design quantum algorithms. There are many excellent
introductions to the quantum circuit model e.g. [36], [51], so
we will be satisfied with a brief survey of the main ideas and
key notions. This prepares us for a look at restricted quantum
circuit models which are efficiently simulated without quantum
resources. This connects to the central research questions of
what is the difference between quantum and conventional
computing. We then close this section with a mention of
some alternative models of quantum computation that are
computationally equivalent to the quantum circuit model.

Before delving into the circuit model, we will make two
remarks to connect to the prior section. First, for one qubit,
all quantum gates from the quantum circuit model can be
visualized as transformations of the Bloch sphere. If the gates
are performed perfectly then they correspond to rotations of
the Bloch sphere. In more general transformations, the Bloch
sphere may be deformed such that the length of the vector
representing p can be less than unit length. (Recall, from

TABLE I
SOME STANDARD QUANTUM GATES AND THEIR REPRESENTATIONS.

Operator Gate Matrix
1 (1 1
Hadamard (H) - 7 (1 _1)
1 0
Phase (S) . (0 z)
1 0 0 O
Controlled Not 0O 1 0 O
CNOT 0 0 0 1
SY o 0 1 o0
1 0
7/8 (T) (0 i /4)
10000000
01000000
00100000
Toffoli gate — 00010000
00001000
<> 00000100
00000001
00000010
. 0 1
Pauli X (1 0)
Pauli Y’ (? _OZ)
. 1 0
Pauli Z (0 _1)

Rotation about 1 exp(i0n.(X,Y, Z)/2)

Fig. [1l that a vector of length zero would correspond to the
mid-point of the probability axis i.e. p = 0.5.)

Second, we can consider moving away from the general
picture of a gate or series of gates, U, acting on a quantum
probability density matrix: 7 (p) = Poutput- If the circuit U is
done without any errors, then we can write, A) UpUT.
Further, if the probability density matrix is pure p? = p, then
we may write p = z/JwT Combmmg these two statements, we
have £y (Yt) = U (Ue) allowing the quantum dynamics
to be describable as U 1; = ﬁoutput. Thus, in the case that
both the gates are perfectly implemented and the probability
density matrix is pure, we can use the wave function picture of
U1 found in standard introductions [36], [S1]]. This distinction
will not be relevant for the remainder of the review.

For conventional computing in the circuit models, the
NAND gate is universal for computation. This means that
every other circuit has an equivalent construction using ex-
clusively NAND gates. The NAND gate takes two inputs and
returns a single output O if and only if both inputs are 1.
Because two bits are used for input and only one bit for output,
this gate is irreversible and cannot be used as a quantum
circuit element in a straightforward way. The Toffoli gate,
as shown in Table [l is a reversible gate that is universal
for conventional computation. Its existence as a quantum
circuit element shows that all conventional computations can
be converted to quantum computation. A few examples of
quantum circuit elements are given in Table [l

A universal gate set is a fixed set of operations that when



composed together allow one to construct any arbitrary multi-
qubit transformation. We note immediately that the number
of gates need to construct an arbitrary unitary starting from a
fixed set could potentially be very large. Nonetheless, given
single-qubit rotations, almost any two-qubit gates will suffice
[52]. There are a few special instances where the two-qubit
gate is insufficient: for example, if the two-qubit gate is
actually composed of two independent single-qubit gates.
However, if an operation or matrix is chosen at random then
almost surely it is sufficient for universal quantum computation
[53], [52]. Thus, a universal gate set is achievable through
almost any two-particle interaction; hence, the wide variety of
physical qubits.

There are two gate sets of special interest because, not only
do they fail to span the full set of transformations, they are also
tractable with conventional computing. The first is the Clifford
gate set[54]. The H, S, and CNOT gates are the generators of
the Clifford group. A circuit composed of only the Clifford
gates can be computed using conventional computation. Note
that the T gate listed in the Table of gates allows for the
Clifford set to realize universal quantum and some quantum
algorithmic costs estimates are given by the T gate count of
the implementation. The second specialized gate set is the
matchgate [S3] (or free-fermion [56] gate set) which can also
be efficiently simulated without quantum resources. First, we
begin with the Clifford gate.

In the case of the Clifford gates (H, S, CNOT given
in Table [[), a family of operators (the Pauli group) P =
{P1, P2, P3, Py, Ps, ...} is preserved such that action of Clif-
ford gates will only transform each element P; into another
element P, but not into linear combinations of elements as
in 0.4P; 4 0.6F;. This gate set was studied in the theory
of quantum error correction [54], [57], [58]], [36] leading to
the development of the stabilizer formalism] widely employed
in quantum information science. Note that many of the early
ideas for quantum algorithms that relied exclusively on su-
perposition are simulatable with the Clifford formalism e.g.
Deutsch’s algorithm [59].

A second set of gates that are also tractable with con-
ventional computing is the matchgate set [S5]. This set is
also known as free-fermion gates [56]. Both the perfect
matching problemf] for planar graphs [60] and the physical

5The stabilizer formalism extends families 9f operators, like the Pauli
group P, to a corresponding set of vectors {1y }x—1 that are ‘stabilized’
by that particular family of operators. Here stabilized means that the action
of any operator from the family does not change the corresponding set of
vectors {t);} e.g. in the case only one vector is stabilized: Ppbo = 1po. If
an unwanted error occurs then the resulting vector will leave the stabilized
subspace and in many instances, this can be both detected and corrected [54]],
[57]).

5The perfect matching problem for a graph with given vertices and edges
requires selecting a set of edges where every vertex has only one neighbor.
The selected edge perfectly matches all vertices into pairs.

description of non-interacting fermionic particlesﬂ are deeply
connected to the computational and mathematical properties
of determinants[§ This connection enables circuits composed
of matchgates to be efficiently computed without the help of
quantum resources [56], [55].

So far, we have been discussing quantum operations as a
discrete set of gates that are applied in a prescribed sequence.
However, the quantum circuit model is not the only way to
describe quantum computation just as there are equivalently
powerful ways to control a conventional computer e.g. Fortran
or C++. Similar to the difference between conventional pro-
gramming languagesﬁ, some quantum computational models
align with certain quantum devices better than others.

Some important alternatives to the quantum circuit model
include quantum Turing machines [63], adiabatic quantum
computation [64], [65]], quantum walk models [66], and dissi-
pative quantum computing [67]]. Additionally, a wide variety
of layered circuit designs have been shown to be universal
for quantum computation such as quantum approximate op-
timization [68] and variational quantum eigensolver [69]. In
Section [V] we collect these observations using the quantum
signal processing framework [70].

IV. QUANTUM PRIMACY EXPERIMENTS

Quantum primacy refers to the situation where a quantum
device has performed a computation that cannot be done in
any other way. Note that the computational task may or may
not have practical significance but is chosen merely to show
the separation between quantum and conventional computing
devices.

The two most widely discussed approaches to quantum
primacy [71], [72] are the BosonSampling [61] and Ran-
dom Circuit Sampling [73] problems. In the first of these
problems, Random Circuit Sampling, considers the sampling
from the output distribution of randomly generated quantum

TFermion are identical particles that carry the antisymmetric one-
dimensional representation of the symmetric group of permutations. Since
this representation is one-dimensional, the action of permutations does not
change the quantum probability density matrix. The other one-dimensional
representation of the symmetric group irrespective of the number of elements
being permuted is the completely symmetric representation which corresponds
to bosons discussed further in Section

8For the present discussion, let us recall [41] that a determinant is
characterized by

n!

det(A) = >

n
sen(m) [ Ai rci) “)
TESH i

where A is an n X n matrix and Sy, is the set of permutations of n objects.
Here sgn(m) is =1 depending if the permutation 7 is composed of an even
e.g. P12 Pa3 or odd e.g. P12 P23 P12 = Pj3 number of transpositions. This
summation over n factorial factors to obtain det(A) is equal to the product
of the eigenvalues of A. The eigenvalue computation is much faster than
summing over the formula in Eq. @). The same combinatoric function without
the sgn(m) is called the permanent: perm(A) = Z!esm [Ti" As,xi)- This
corresponds to non-interacting particles called bosons [61].

9One may argue the identity of programming languages mostly lies in their
syntaxes and programming paradigms. However, in the current context, two
programming paradigms are called equivalent if they both simulate the same
class of functions up to a polynomial-time overhead due to the conversion
[62].



circuits [73]]. It is important to note that these quantum
primacy experiments are based on sampling arguments which
further underline the tight correspondence between quantum
and probability theory discussed earlier. The second problem,
BosonSampling, a few photons are sent into a randomly
selected linear-optics setup and the computational task is to
sample from the output distribution of photons exiting the
optical network [61]].

After the attention received by the first experimental result
claiming quantum primacy [16], there has been a fascinating
string of results both experimentally and theoretically leaving
the exact boundary of primacy still an open area of active re-
search. The first claim of quantum primacy was accomplished
using a 53 transmon qubit device executing and sampling
around 1,500 random gates as part of a circuit with 20 layers
deep [16]. However, this was for brute force approaches. Since
then, larger experimental implementations of Random Circuit
Sampling with more qubits (56 qubits and with 60 qubits) with
a circuit depth of 24 layers [17], [18]].

Initially, it was claimed [16] that conventional computers
would take 10,000 years to accomplish the same task. This
assumed a brute force simulation however this has been vastly
improved using tensor networks methods based on the analysis
of states with low entanglement [44], [43]. The application
of heavy computational resources and clever entanglement
truncation schemes have has led to much improved conven-
tional computational results largely closing the computational
gap [74), [[75], [46l, [76], [77]. Regardless of the classical
computational progress, the cost of performing tensor network
simulations scales exponentially with the number of qubits so
these approaches can be defeated by going to larger experi-
mental qubit devices. Note that even if the original quantum
primacy circuits are simulated without quantum resources,
performing increasingly larger Random Circuit Sampling in-
stances should increase the difficulty beyond conventional
computing since tensor networks scaling exponentially with
the system size. Theoretically, this idea is supported [71],
[72], [[78] based on complexity conjectures. Unfortunately, the
standard statistical benchmark used to certify correct RCS, the
linear cross entropy, has major deficiencies [79].

The linear cross entropy benchmark was chosen as an easy
to estimate proxy for the fidelity of the quantum state prepared.
The fidelity, the total variation distance and the cross entropy
require exponential samples to estimate while the linear cross
entropy does not. However, there are statistical vulnerabilities
when the linear cross entropy is used instead of other metrics
that require exponential more sampling. More startling is the
asymptotic scaling of the linear cross entropy as compared
with standard measures like the fidelity. For conventional
algorithms attempting to hack or otherwise spoof the linear
cross entropy, it can be shown that their performance actually
improves with system size. This behavior is drastically dif-
ferent from the scaling of the fidelity between N approximate

states and N ideal states asymptotically. '] Thus, there is need
for a new routes to validating the results of Random Circuit
Sampling.

The second route to quantum primacy also under active
debate uses the BosonSampling problem [61]. The Boson-
Sampling problem relies on the hardness of approximating the
permanent of a matrix and its deep connection to the nature of
indistinguishable bosons. BosonSampling can be implemented
with linear optics but requires less than full-fledged universal
photonic quantum computing [30]. The first claims of quantum
primacy using a quantum optics setup appeared in 2020 [80]
and have been since been improved [81l]. Similar to the
discussion ensuing the Random Circuit Sampling primacy
experiment, improved conventional computational methods are
claimed to simulate the early experimental BosonSampling
primacy results [82]. However, the mid-2022 announcement
from Xanadu Computing provides a new quantum primacy
experimental claim [?].

The experimental and theoretical progress in understanding
the boundaries between quantum and classical computing is
an active and growing area of research. This race between
quantum and conventional technologies an interesting area to
follow in 2022. Next, we turn our attention toward practical
applications and quantum algorithms.

V. QUANTUM COMPUTING ALGORITHMS AND
APPLICATIONS

Applications of quantum computing are as diverse as the
fields necessary to create quantum information processing
technology. In recent years, the excitement has attracted further
talent and investment sparking a rapid growth in the quantum
algorithm development [[83]]. There now exists a zoo of quan-
tum algorithms [84]] and, in this section, we hope to provide a
taxonomy with for understanding and traversing the literature.
We do so by dividing our quantum algorithm classification into
two overlapping groups: the first wave quantum algorithms
based on formal methods and the second wave quantum
algorithms largely based on optimization methods. We will
connect these two groupings using the quantum singular
value transformation framework which broadly and elegantly
combines decades of theoretical quantum algorithms research.

Initial ideas about quantum computation were generated
with heavy input from the mathematics and computer science
community, where the questions of noise were considered only
formally and shown to be theoretically surmountable. There-
fore, the first wave of quantum algorithms assumed noiseless
quantum device operation (or otherwise fully quantum error
corrected systems). The availability of noisy intermediate-scale
quantum (NISQ) [85] computers spurred the second wave
of quantum algorithms and quantum tasks that more easily
take into account noise and advances in algorithm design
on conventional computers. We begin with the first wave,
followed by the second wave.

101f an approximate state has overlap s with the ideal state then, the
combined state of N non-interacting copies have overlap of sV which is
asymptotically vanishing.



A. First wave quantum algorithms for ideal quantum devices

The initial burst of quantum computing algorithms was
developed with an ideal quantum computer in mind. Quantum
Turing models, quantum gate model, and query-based oracle
models were studied largely without noise. The development
of quantum error correction [57]], [58] was pursued alongside
the first wave quantum algorithms with sufficient theoretical
success that algorithm designers felt they could largely ignore
noise and details of the physical architecture. The canonical
reference for this wave of quantum algorithm development
is [36] which despite being over 20 years old still stands as
a solid reference for the theoretical background of quantum
computing and quantum information. The recent review article
Ref. [86], also provides a canonical introduction to quantum
computing with an up to date perspective on the field.

The two foundational results culminating from these effort
are the Grover search and the quantum Fourier transform
subroutines. We begin with Grover search.

Grover search is a quantum algorithm for finding a marked
item in an unsorted database of size /N. This task ordinarily
takes a number of trials that is proportional to the size of the
database. There is no particular shortcut other than testing each
item in the database for a hit. An apt example is searching for
a specific tool in an unsorted shed. Each item can be evaluated
as correct or incorrect by the mechanic e.g. who sits far away
from the shed. With Grover’s quantum algorithm, the marked
item can be found in a time that is proportional to the square
root of the database size.

Grover’s search was announced in 1996 [87] and it was one
of the few quantum algorithms that had proof of optimality for
the task it solved [88]. This means for problems belonging to
the complexity class NP, quantum algorithms can, at most,
achieve quadratic speedup [88]. Informally, this means if the
best known computational method for solving a sufficiently
generic problem is just the brute-force testing of every possible
solution, then optimal use of quantum resources will achieve
only a quadratic improvement over the conventional brute-
force algorithm.

To understand the major themes of quantum algorithm
development, it is useful to delve deeper into the theory behind
the Grover search as it serves as the backbone of most other
quadratic speed ups in quantum algorithm development. The
key idea of the Grover algorithm is the use of a product
of reflections wherd] R2 1. Reflections are built as
R = (2I1 — 1) whenever II is a projector IT = I12.

The Grover operator, W = R4 R, is a product of two
reflection operators that after approximately /N iterations,
transform the initial state p into a marked state p, with high
probability. The first of the two reflection operators, R4 =
2ps—1, performs a reflection about the pure state generated by
applying the Hadamard transformation on all qubits initialized
in the Outcome O state of the Bloch sphere. The resulting
quantum probability density matrix ps is such that all matrix

A reflection matrix is an unitary (or orthogonal) matrix with determinant
equal to -1.

elements including populations and coherences are equal to
1/N. Second, another reflection operator, R, = 2p, — I,
provides phase oracle access to the target pure state, p2 = p,.
See Fig.Bh. We will return to this analysis in Section [V-C] but
for now we continue with the quantum Fourier transform and
its applications.

Quantum factoring and quantum simulation are the two
most important applications of quantum computing. Both
rely heavily on the quantum Fourier transform. The quantum
Fourier transform (QFT) algorithmic sub-routine improves ex-
ponentially over the conventional computing Fourier transform
implementations. The exponential separation between these
two techniques is at the heart of many of the most exciting
applications of quantum algorithms like factoring [89], phase
estimation [90] and the matrix inversion algorithm [91].

The difficulty of factoring large prime numbers provides
modern communication security [92]. The commercial and
cryptographic importance of Shor’s quantum factoring al-
gorithm sparked much of the excitement and attention of
quantum computing in the first wave of quantum algorithm
development. For factoring composite numbers, the quantum
algorithm [89] requires solving for the periodicity of f(z) =
a® mod N with N the composite number to be factored, a
is a randomly selected integer, and z mod y equal to the
remainder resulting from division of x by .

A similar idea extends the applications of quantum Fourier
transform to finding the periodicity of a quantum time-
evolution. This is leveraged in quantum simulation tasks
[93], [94] resulting in the phase estimation technique [90].
The phase estimation algorithm allows the eigenvalues of a
Hamiltonian to be probed and has found many applications in
quantum chemistry and the simulation of physics [95], [96],
(971, 98]l

B. Second wave algorithms for noisy intermediate-scale quan-
tum devices

This second wave of quantum algorithms attempts to cir-
cumvent the use of error correction by relaxing the strict
theoretical impositions of quantum computer science [63]] and
turns towards heuristic optimization procedures. Many of these
approaches are designed to take into account the hardware
strengths and limitations as well as leverage advances in
conventional optimization techniques.

The results of quantum computational complexity theory
usually focus on worst case analysis [63], [99], [L00] leav-
ing open the possibility that quantum resources may make
progress using heuristic optimization methods [101]], [102].
The resulting wave of approaches typically use feedback
between a quantum device and a conventional computer.
Error mitigation strategies can be included as part of the
quantum optimization loop. In the literature, this family of
methods include variational quantum algorithms, variational
quantum eigensolvers (especially in the context of quan-
tum simulation problems), quantum approximate optimization
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Fig. 3. The Grover search and the quantum singular value transform share conceptual similarities. The Grover search circuit consisting of two reflections
shown in Subfig. (a). The first reflection R, is constructed using the oracle deciding if a guess is correct or incorrect. The second reflection 259 — I is about
the quantum state po where all qubits are in the +Z state of the Bloch sphere. The pre- and post-fixed Hadamard gates transform the each qubit of the state
into the +.X state. This yields the uniform superposition. In Subfig. (b), the generalized circuit for the quantum singular value transformation still consists
of a product of two reflections. However, these reflection operations are performed with step-dependent control parameters ¢; about the subspaces identified
by either projector IT or TI. (Note, since R? = (21T — I)? = I, we have exp(i¢pR) = cos(¢)I + isin(¢)R.) The analysis of the possible functions of Uy
reachable after d iterations results in the quantum singular value transformation framework [70].

algorithm, hybrid quantum-classical algorithm and other
anasatz methods. Most of these approaches utilize a conven-
tional computer to perform an optimization procedure using
information extracted from the quantum device, usually in an
iterative fashion. These quantum optimization methods have
been applied to diverse areas such as portfolio optimization
[103] and quantum machine learning [104]. Many of the
flagship experiments in quantum optimization were used to
find the lowest energy state of the quantum Hamiltonians
found in quantum magnets, molecular compounds and other
physical simulations contexts, quantum magnets, and other
quantum simulation processes [93], [105], [L06], [LO7], [98l,
[96]].

Wide interest in quantum computation that is intrinsi-
cally robust against errors began with the introduction of
the adiabatic quantum computing model [64]. In this model
quantum instead of thermal fluctuations are used to perform
optimization. The first quantum computing company founded,
D-Wave Systems, began with this vision in mind. However,
the design of the D-Wave devices only allows optimization of

2These methods highly overlap and often have the same computational
power and expressivity. The term hybrid quantum-classical algorithms is not
a useful way to describe the second wave algorithms because all quantum
devices will simultaneously utilize conventional computing to control the
quantum device or to dynamically correct errors.

Hamiltonian problems of the form

H(g): Z JijSiSj-i- Z hisi

edges:{ij} vertices

)

Here H, with instances defined by {J;;, h;}, is a function
of the binary variables s; = +1 e.g. § = (+1,—1,+1...).
The goal is to find the configuration S, that minimizes H ().
By varying the parameterization of H, we can encode any
other constraint satisfaction problems from the computational
complexity class NP [60]. By restricting s; to be 1, the D-
Wave devices are only able to solve non-quantum problems
with utilizing quantum resources [[10S].

One important caveat worth highlighting is that optimization
problems can be arbitrarily hard. Thus, many of the claims
about quantum optimization must be made heuristically. Be-
cause other optimization problems can be mapped to Eq. (3),
solving this problem for all instances of {J;;, h;} is not likely
to be possible with a conventional computer [62]]. As noted
above one can, at best, achieve a quadratic speed up on
this problem. Moreover, when the Hamiltonian in Eq. @) is
generalized to a quantum Hamiltonian where the inputs and
the constraints can vary with their quantum degrees of freedom
e.g. coherences, the problem only becomes more difficult.
The full analysis of worst-case optimizations problems of
lowest energy states of quantum Hamiltonians resulted in the
theory of Quantum Merlin-Arthur problems [99], [100]. The
takeaway from the results of computer science is that: even



with the promise that quantum resources can verify correct
solutions efficiently, generating a targeted specific quantum
state is not efficiently doable with or without quantum re-
sources. In other words, just as quantum resources can help
solve problems, they can also lead to increased difficulty.

So far, we have classified quantum computing algorithms
into two branches: those designed for idealized abstractions of
quantum computers and the heuristic methods inspired by the
quantum hardware currently available. These are not distinct
classifications but rather conceptual guidance for navigating
the growing literature of quantum algorithms and their ap-
plications. Next, we examine the framework of the quantum
singular value transformation. The purpose of including this
specific theoretical framework is: (1) it captures the results
and ideas from both types of quantum algorithms and (2) the
technical underpinning allows it to subsume many known the-
oretical results bounding the performance of various quantum
algorithms.

C. The quantum singular value transformation framework

The framework of quantum singular value transformations
resulted from vast generalization of known techniques for
analyzing quantum algorithms. The key idea is that a gen-
eralized Grover search protocol allows for nearly arbitrary
polynomial transformation of a given matrix A, embedded
into the upper left block of a unitary matrix. Polynomial
approximations to exp(A,) and A, ! allows this generalization
to subsume not only Grover search but also quantum Fourier
transforms, matrix inversion quantum algorithms, quantum
adiabatic optimization and many other. Here, we try to give
a clear overview of the structure of the quantum singular
value transformation and we refer the reader to [109], [[70]
and references therein for more precise notions.

The core insight begins with Grover search. There the
quadratic speed up over conventional algorithms is achieved
using a product of two reflections as mentioned above. The
product of two reflection operators in the case of Grover search
results in a two-dimensional subspace where the analysis of the
quantum algorithm proceeds. This two-dimensional subspace
exists no matter how large the database is and allows one
to consider the algorithm using an effective two-dimensional
space i.e. a qubit. This is the essence of the qubitization idea
[110], [111].

The first step in the generalization of Grover’s search is
to allow reflections about more general subspaces than those
generated by one dimensional projectors e.g. pure quantum
probability density matrices. This insight was first used to
effect in the quantization of pairs of Markov chains [L11]]
where the product of reflections was decomposed into one-
and two-dimensional subspaces.

The second important realization stems from the mathe-
matical characterization of all possible functions achievable
using NMR pulse sequences on a single spin. In NMR, the
effective time evolution can be approximated as an alternating
sequence of fixed free evolution followed by an experimentally
controllable pulse. For the one qubit situation, this can be
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described as a fixed rotation about the Z-axis of the Bloch
sphere, Uz(x), followed by a parameterized rotation about
the X-axis Ux (¢;). Mathematically, this gives:

W(¢) = Uz(x)Ux (¢1)Uz(2)Ux (¢2)..Uz(x)Ux (¢a) (6)

The full analytic description of the qubit gates accessible by
control parameters (5 to after d alternations is the second major
ingredient of the quantum singular value transformation.

As may be expected, the resulting final gate is describable
using polynomials of degree d of the variable x.

_ (poly® (z)  poly®V)(x)
— \poly 9 (z)  poly™(z)

Here each entry is a polynomial with known properties proven
in a series of papers all summarised in reference [[70]. There
now exists numerical algorithms for selecting the parameters
to reach target functions [109].

The culmination of these two lines of work resulted in the
full analysis of the circuit shown in Fig. Bb. The theorems
proven in the quantum singular value framework [70] allows
one to extend the understanding of W(gz?) to the transformation
of subblocks of unitary matrices. Creating a unitary, U,, with
a specific matrix A, present in the 00 sub-block is called a
block encoding of matrix A,.

[ ]
3

v~ (

The analysis needed to prove properties of the polynomials in
Eq. (@ can be extended to prove that the output of the circuit
in Fig. Bb will give

The quantum singular value transform In Eq. (8), the action
of the polynomial on matrix A, is defined by its action on
the singular values of A, giving the framework its name. The
singular value decomposition of A, is given as

Amzzok "/_;]% Jl?
k

—

W(¢) @

Az

—

W(¢) =

<pogy(oo) (A) ®

with z/;]f and 7,/;,5 the left and right singular vectors correspond-
ing to singular value . Then, a polynomial of matrix A, is
given as

poly(Az) = > poly(ox) b ¥f.
k

The realization of polynomial transformations of the singular
values of any block encoded matrix allows the framework
to subsume most major quantum algorithms including their
asymptotic cost analysis [[109], [[70].

Despite the proofs and analysis of the quantum singular
value framework being mathematically involved, we have
attempted to provide a useful overview. It should be noted that
this section roughly follows the timeline of quantum algorithm
development. We started with the first wave that began in the
mid-1990’s, followed by the crescendo of the second wave
activity invigorated by the recent availability of actual quantum



devices, then we ended with a powerful framework that will
likely seem more activity in the coming years.

VI. OUTLOOK

We began with technology, continued with quantum theory
and its models of computation. Now with the overview of
quantum algorithms and applications completed, we can add
to a few final topics to complete our roadmap to the literature
and status update on the field. While maps are useful, deeper
appreciation occurs by experiencing the terrain. Therefore, we
have ended with a few pointers to resources for accessing
quantum devices.

Through the use of cloud computing, companies have
already begun offering public access to quantum devices for
academic or industrial research purposes. There are mainly
two types of services. The first type is cloud services providing
access to a single company’s collection of quantum devices.
The most widely known is the Qiskit cloud services offered
by IBM Quantum [112]]. The second type are multi-platform
services that work as intermediaries to give users options to
access quantum devices owned by multiple vendors. A key
example of such a service is Amazon Braket [113] offered
through Amazon Web Services.

In most cases, the cloud computing interfaces to quantum
devices are implemented in Python to provide starting points
for accessing working quantum devices. To give an idea
of how quantum devices are manipulated, the circuit and
corresponding Python snippets for the previously introduced
Bell state (Fig.[2) given in Fig.

Finally, we would like to highlight a few resources for
learning the implementation of quantum algorithms. The IBM
Qiskit textbook [51] provides an college-level introduction to
quantum information with integrated programming exercises
within the text. Similarly, the Codebook [114] by Xanadu
provides an introductory course built around the Pennylane
package providing differentiable programming of quantum
computers. QBraid is an online platform for developing quan-
tum software that sponsors quantum hackathons and offers
introductory quantum tutorials [[L15]. There are many other
introductory resources and coding platforms available through
public, academic, and commercial channels.

Armed with the knowledge and perspectives of this review,
we hope that the reader is prepared to appreciate and follow
this growing area of interest. We have tried to provide a useful
starting point for interested graduate students in science and
engineering. There are many exciting things to look forward to
in the area of quantum computing in 2022. This includes new
quantum devices coming online, demonstration of definitive
quantum primacy and of practical quantum advantage, stable
quantum memory maintained by dynamical quantum error
correction and the integration of multiple types of qubits into
a single platform. We are looking forward to both watching
and to participating in the evolution of quantum technology
and this paper is our invitation to the reader.
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—H =

469_

from giskit import QuantumCircuit,

IBMQ

#Create the Bell-state circuit
# with 2 qubits and 2 bits

qc QuantumCircuit (2, 2)

qgc.h (0)

gc.cx(0,1)

gc.measure_all ()

IBMQ.load_account ()

provider = IBMQ.get_provider (
group="'deployed"')

backend = provider.backend.ibmg manila

job = execute(qc, backend, shots=1000)

from braket.circuits import Circuit
from braket.aws import AwsDevice

gc = Circuit () .h(0).cnot(0,1)
lect a device or simulator
#Rigetti qubit device
device = AwsDevice (
"arn:aws:braket::device/gpu/rigetti/Aspen-9")
# IonQ quantum device
device = AwsDevice (

"arn:aws:braket::device/gpu/iong/ionQdevice")

result

device.run (gc, shots=1000) .result ()

Fig. 4. The quantum circuit and sample Python code for IBM Qiskit and the
Amazon Braket service to create the Bell state described in Fig 2l Note that
although these commands are valid, these code snippets will not run without
properly initializing an account with the correct permissions and running the
proper commands to load those credentials.

VII. ACKNOWLEDGEMENTS

We would like to thank K. Setia, K. Stewart, T. Takeshita,
and S. Gulania for useful discussions. Thanks to U. Vazirani
for point out key quantum primacy references. This work
was supported by the US NSF (PHYS-1820747, EPSCoR-
1921199) and by the Office of Science, Office of Advanced
Scientific Computing Research under programs Fundamental
Algorithmic Research for Quantum Computing and Optimiza-
tion, Verification, and Engineered Reliability of Quantum
Computers project. This paper was partially supported by
the “Quantum Chemistry for Quantum Computers” project
sponsored by the DOE. JDW holds concurrent appointments
at Dartmouth College and as an Amazon Visiting Academic.
This paper describes work performed at Dartmouth College
and is not associated with Amazon.

This paper is released under under a Creative Commons
Attribution 4.0 International License [116].

REFERENCES
[1] “Overview on quantum initiatives world-
wide - update mid 2021,” July 2021,

https://qureca.com/overview-on-quantum-initiatives- worldwide-update-mid-2021/

[ Accessed: Jan 7, 2022]. [
[2] M. G. Raymer and C. Monroe, “The US national quantum initiative,”
Quantum Science and Technology, vol. 4, no. 2, p. 020504, 2019. [1]


https://qureca.com/overview-on-quantum-initiatives-worldwide-update-mid-2021/

(3]
(4]
[5]

(6]

(71
(8]
(91

[10]

[11]

[12]
[13]
[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

R. Landauer, “Information is Physical,” Phys. Today, vol. 44, no. 5,
p. 23, Jan 2008. [

J. Preskill, “Quantum computing and the entanglement frontier,”
arXiv:1203.5813, Nov. 2012. [1I

I. Durham, D. Garisto, and K. Wiesner, “Physicists Need to Be More
Careful with How They Name Things,” Scientific American, Feb
2021. [0

C. Palacios-Berraquero, L. Mueck, and D. M. Persaud, “Instead of
‘supremacy’ use ‘quantum advantage’,” Nature, vol. 576, no. 7786,
pp. 213-213, Dec. 2019. [1I

J. Preskill, “Why I Called It ‘Quantum Supremacy’,” Quanta
Magazine, Oct. 2019. o

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura et al., “Quantum
computers,” Nature, vol. 464, no. 7285, pp. 45-53, Mar 2010. m

A. J. Heinrich, W. D. Oliver, L. M. Vandersypen, A. Ardavan et al.,
“Quantum-coherent nanoscience,” Nat. Nanotechnol., pp. 1-12, 2021.
m

S. Rasmussen, K. Christensen, S. Pedersen, L. Kristensen et al.,
“Superconducting circuit companion—an introduction with worked
examples,” PRX Quantum, vol. 2, p. 040204, Dec 2021. m

M. Kjaergaard, M. E. Schwartz, J. Braumiiller, P. Krantz et al.,
“Superconducting Qubits: Current State of Play,” Annu. Rev. Condens.
Matter Phys., vol. 11, no. 1, pp. 369-395, Mar 2020. [1

B. D. Josephson, “Possible new effects in superconductive tunnelling,”
Physics Letters, vol. 1, no. 7, pp. 251-253, Jul 1962. m

M. Tinkham, Introduction to Superconductivity: Second Edition (Dover
Books on Physics). Dover Publications, Jun 2004.

A. Blais, A. L. Grimsmo, S. Girvin, and A. Wallraff, “Circuit quantum
electrodynamics,” Rev. Mod. Phys., vol. 93, no. 2, p. 025005, 2021. Qi
J. Koch, T. M. Yu, J. Gambetta, A. A. Houck et al., “Charge-insensitive
qubit design derived from the cooper pair box,” Phys. Rev. A, vol. 76,
p. 042319, Oct 2007.

F. Arute, K. Arya, R. Babbush, D. Bacon et al., “Quantum supremacy
using a programmable superconducting processor,” Nature, vol. 574,
no. 7779, pp. 505-510, Oct 2019. 21 [

Q. Zhu, S. Cao, F. Chen, M.-C. Chen et al., “Quantum computational
advantage via 60-qubit 24-cycle random circuit sampling,” Sci. Bull.,
p. S2095927321006733, Oct. 2021. 21 [

Y. Wu, W.-S. Bao, S. Cao, F. Chen et al, “Strong Quantum
Computational Advantage Using a Superconducting Quantum
Processor,” Phys. Rev. Lett., vol. 127, no. 18, p. 180501, Oct.
2021. 217

D. J. Wineland, “Nobel lecture: Superposition, entanglement, and
raising schrodinger’s cat,” Rev. Mod. Phys., vol. 85, pp. 1103-1114,
Jul 2013.

S. Haroche, “Nobel lecture: Controlling photons in a box and
exploring the quantum to classical boundary,” Rev. Mod. Phys.,
vol. 85, pp. 1083-1102, Jul 2013.

C. D. Bruzewicz, J. Chiaverini, R. McConnell, and J. M. Sage,
“Trapped-ion quantum computing: Progress and challenges,” Appl.
Phys. Rev., vol. 6, no. 2, p. 021314, 2019.

C. Monroe, W. C. Campbell, L.-M. Duan, Z.-X. Gong et al.,
“Programmable quantum simulations of spin systems with trapped
ions,” Rev. Mod. Phys., vol. 93, p. 025001, Apr 2021. 2l

C. Ryan-Anderson, J. G. Bohnet, K. Lee, D. Gresh et al., “Realization
of real-time fault-tolerant quantum error correction,” Phys. Rev. X,
vol. 11, p. 041058, Dec 2021.

X. Wu, X. Liang, Y. Tian, F. Yang et al, “A concise review of
Rydberg atom based quantum computation and quantum simulation,”
Chin. Phys. B, vol. 30, no. 2, p. 020305, Feb 2021.

S. Ebadi, T. T. Wang, H. Levine, A. Keesling et al., “Quantum phases
of matter on a 256-atom programmable quantum simulator,” Nature,
vol. 595, no. 7866, pp. 227-232, Jul 2021.

D. Bluvstein, H. Levine, G. Semeghini, T. T. Wang et al., “A quantum
processor based on coherent transport of entangled atom arrays,”
arXiv:2112.03923, Dec. 2021.

T. M. Graham, Y. Song, J. Scott, C. Poole et al., “Demonstration of
multi-qubit entanglement and algorithms on a programmable neutral
atom quantum computer,” dec 2022.

T. Xin, B.-X. Wang, K.-R. Li, X.-Y. Kong et al., “Nuclear magnetic res-
onance for quantum computing: Techniques and recent achievements,”
Chin. Phys. B, vol. 27, no. 2, p. 020308, 2018.

12

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]
[38]
[39]
[40]
[41]
[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]
[52]

[53]

[54]

D. G. Cory, M. D. Price, and T. F. Havel, “Nuclear magnetic resonance
spectroscopy: An experimentally accessible paradigm for quantum
computing,” Physica D, vol. 120, no. 1-2, pp. 82-101, 1998.

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient
quantum computation with linear optics,” Nature, vol. 409, no. 6816,
pp. 46-52, 2001. 2171

S. Bartolucci, P. M. Birchall, M. Gimeno-Segovia, E. Johnston
et al., “Creation of Entangled Photonic States Using Linear Optics,”
arXiv:2106.13825, Jun. 2021.

J. E. Bourassa, R. N. Alexander, M. Vasmer, A. Patil et al., “Blueprint
for a scalable photonic fault-tolerant quantum computer,” Quantum,
vol. 5, p. 392, 2021. [

A. Chatterjee, P. Stevenson, S. De Franceschi, A. Morello et al.,
“Semiconductor qubits in practice,” Nat. Rev. Phys., vol. 3, no. 3, pp.
157-177, Mar 2021.

J. Zhang, L. Xu, G. Bian, P. Fan et al., “Diamond Nitrogen-Vacancy
Center Magnetometry: Advances and Challenges,” arXiv:2010.10231,
Oct. 2020.

J. D. Whitfield, Understanding the Schrodinger Equation: Some
[Non]Linear Perspective. Nova Scientific Publishing, 2020, ch.
“Understanding the Schrodinger Equation as a Kinematic Statement:
A Probability-First Approach to Quantum”. 21 [

M. A. Nielsen and I. Chuang, Quantum computation and quantum
information. American Association of Physics Teachers, 2002.
B

C. M. Grinstead and J. L. Snell, Introduction to probability. American
Mathematical Soc., 2012.

R. A. Horn and C. R. Johnson, Matrix analysis, 2nd ed. Cambridge
; New York: Cambridge University Press, 2012. 3l

S. T. Thornton and J. B. Marion, Classical dynamics of particles and
systems, 5th ed. Brooks/Cole, 2004. 3]

D. J. Griffiths, Introduction to Quantum Mechanics.
England, UK: Cambridge University Press, Aug 2018. 3]
R. A. Horn and C. R. Johnson, Matrix Analysis. Cambridge, England,
UK: Cambridge University Press, Oct 2012. 3

F. G. S. L. Brandao, M. Christandl, A. W. Harrow, and M. Walter,
“The Mathematics of Entanglement,” arXiv:1604.01790, Apr. 2016. @
J. 1. Cirac, D. Pérez-Garcia, N. Schuch, and F. Verstraete,
“Matrix product states and projected entangled pair states: Concepts,
symmetries, theorems,” Rev. Mod. Phys., vol. 93, p. 045003, Dec
2021. @7

F. Verstraete, V. Murg, and J. I. Cirac, “Matrix product states, projected
entangled pair states, and variational renormalization group methods for
quantum spin systems,” Adv. Phys., vol. 57, no. 2, pp. 143-224, Mar
2008. @7

G. Vidal, “Efficient Classical Simulation of Slightly Entangled Quan-
tum Computations,” Phys. Rev. Lett., vol. 91, no. 14, p. 147902, Oct
2003. @

F. Pan, K. Chen, and P. Zhang, “Solving the sampling problem of
the Sycamore quantum supremacy circuits,” arXiv:2111.03011, Nov.
2021. @7

A. Einstein, B. Podolsky, and N. Rosen, “Can Quantum-Mechanical
Description of Physical Reality Be Considered Complete?” Phys. Rev.,
vol. 47, no. 10, pp. 777-780, May 1935. [

J. S. Bell, “On the Einstein Podolsky Rosen paradox,” Phys. Phys. Fiz.,
vol. 1, no. 3, pp. 195-200, Nov 1964. @

M. Giustina, M. A. M. Versteegh, S. Wengerowsky, J. Handsteiner
et al., “Significant-loophole-free test of bell’s theorem with entangled
photons,” Phys. Rev. Lett., vol. 115, p. 250401, Dec 2015. @

A. Broadbent and C. Schaffner, “Quantum cryptography beyond quan-
tum key distribution,” Designs, Codes and Cryptography, vol. 78, no. 1,
pp. 351-382, 2016. @

“Learn quantum computation using qiskit,” http:/qgiskit.org/textbook
[Accessed: Jan 7, 2022]. B [L1]

S. Lloyd, “Almost any quantum logic gate is universal,” Phys. Rev.
Lett., vol. 75, pp. 346-349, Jul 1995.

D. E. Deutsch, A. Barenco, and A. Ekert, “Universality in quantum
computation,” Proceedings of the Royal Society of London. Series A:
Mathematical and Physical Sciences, vol. 449, no. 1937, pp. 669—-677,
1995.

D. Gottesman, “The Heisenberg Representation of Quantum
Computers,” arXiv:quant-ph/9807006, Jul. 1998.

Cambridge,


http://qiskit.org/textbook

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]
[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]
[75]

[76]

[77]

[78]

[79]

[80]

[81]

L. G. Valiant, “Quantum circuits that can be simulated classically in
polynomial time,” SIAM J. Comput., vol. 31, no. 4, pp. 1229-1254,
2002.

B. M. Terhal and D. P. DiVincenzo, “Classical simulation of
noninteracting-fermion quantum circuits,” Phys. Rev. A, vol. 65, no. 3,
p. 032325, Mar 2002.

D. Gottesman, “An introduction to quantum error correction and fault-
tolerant quantum computation,” in Quantum information science and
its contributions to mathematics, Proceedings of Symposia in Applied
Mathematics, vol. 68, 2010, pp. 13-58. [6 [8]

S. M. Girvin, “Introduction to Quantum Error Correction and Fault
Tolerance,” arXiv:2111.08894, Nov. 2021. [d [§]

D. Deutsch, “Quantum theory, the church—turing principle and the
universal quantum computer,” Proc. R. Soc. London A - Math. Phys.
Sci., vol. 400, no. 1818, pp. 97-117, 1985.

F. Barahona, “On the computational complexity of ising spin glass
models,” J. Phys. A. Math. Gen., vol. 15, no. 10, p. 3241, 1982.
S. Aaronson and A. Arkhipov, “The Computational Complexity of
Linear Optics,” Theory of Computing, vol. 9, no. 1, pp. 143-252, Feb
2013. [ [

M. Sipser, Introduction to the theory of computation, 3rd ed. Boston,
MA: Cengage Learning, 2012.

E. Bernstein and U. Vazirani, “Quantum complexity theory,” SIAM
Journal on computing, vol. 26, no. 5, pp. 14111473, 1997. [6 [B]

E. Farhi, J. Goldstone, S. Gutmann, and M. Sipser, “Quantum
Computation by Adiabatic Evolution,” arXiv:quant-ph/0001106, Jan.
2000.

D. Aharonov, W. Van Dam, J. Kempe, Z. Landau et al., “Adiabatic
quantum computation is equivalent to standard quantum computation,”
SIAM J. Comp., vol. 37, no. 1, pp. 166194, 2007.

A. M. Childs, “Universal computation by quantum walk,” Phys. Rev.
Lett., vol. 102, no. 18, p. 180501, 2009.

F. Verstraete, M. M. Wolf, and J. I. Cirac, “Quantum computation and
quantum-state engineering driven by dissipation,” Nat. Phys., vol. 5,
no. 9, pp. 633-636, 2009.

E. Farhi, J. Goldstone, and S. Gutmann, “A Quantum Approximate
Optimization Algorithm,” arXiv:1411.4028, Nov. 2014.

J. Biamonte, “Universal variational quantum computation,” Phys. Rev.
A, vol. 103, no. 3, p. L030401, 2021.

A. Gilyén, Y. Su, G. H. Low, and N. Wiebe, “Quantum singular value
transformation and beyond: exponential improvements for quantum
matrix arithmetics,” in Proceedings of the 51st Annual ACM SIGACT
Symposium on Theory of Computing, 2019, pp. 193-204. [6 [0 [I0]

A. P. Lund, M. J. Bremner, and T. C. Ralph, “Quantum sampling
problems, BosonSampling and quantum supremacy,” NJP Quantum
Inf., vol. 3, no. 1, pp. 1-8, 2017. [@L [

A. W. Harrow and A. Montanaro, “Quantum computational
supremacy,” Nature, vol. 549, no. 7671, pp. 203-209, 2017. ¥}

S. Boixo, S. V. Isakov, V. N. Smelyanskiy, R. Babbush et al., “Charac-
terizing quantum supremacy in near-term devices,” Nat. Phys., vol. 14,
no. 6, pp. 595-600, 2018. [6l 7]

J. Gray and S. Kourtis, “Hyper-optimized tensor network contraction,”
Quantum, vol. 5, p. 410, 2021. [

Y. Zhou, E. M. Stoudenmire, and X. Waintal, “What limits the
simulation of quantum computers?” arXiv:2002.07730, Feb. 2020. [

X. Liu, C. Guo, Y. Liu, Y. Yang et al, “Redefining the quantum
supremacy baseline with a new generation sunway supercomputer,’
arXiv:2111.01066, Nov. 2021. [

G. Kalachev, P. Panteleev, and M.-H. Yung, “Recursive multi-tensor
contraction for xeb verification of quantum circuits,” arXiv:2108.05665,
Aug. 2021. [

S. Aaronson and S. Gunn, “On the classical hardness of spoofing linear
cross-entropy benchmarking,” arXiv:1910.12085, Oct. 2019. [1]

X. Gao, M. Kalinowski, C.-N. Chou, M. D. Lukin et al., “Limita-
tions of linear cross-entropy as a measure for quantum advantage,”
arXiv:2112.01657, Dec. 2021. [

H.-S. Zhong, H. Wang, Y.-H. Deng, M.-C. Chen et al, “Quantum
computational advantage using photons,” Science, vol. 370, no. 6523,
pp. 1460-1463, Dec. 2020. []

H.-S. Zhong, Y.-H. Deng, J. Qin, H. Wang et al., “Phase-Programmable
Gaussian Boson Sampling Using Stimulated Squeezed Light,” Phys.
Rev. Lett., vol. 127, no. 18, p. 180502, Oct. 2021. [7]

13

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]
[94]

[95]

[96]

[971

[98]

[99]

[100]

[101]

[102]
[103]
[104]

[105]

[106]

[107]

[108]

B. Villalonga, M. Y. Niu, L. Li, H. Neven et al,
“Efficient approximation of experimental Gaussian boson sampling,”
arXiv:2109.11525, Sep. 2021. [

A. Montanaro, “Quantum algorithms: an overview,” NPJ Quantum Inf.,
vol. 2, no. 1, pp. 1-8, 2016. 7]

S. Jordan, “Quantum Algorithm Z0o,”
https://quantumalgorithmzoo.org/| [Accessed: Jan 3, 2022]. [
J. Preskill, “Quantum computing in the NISQ era and beyond,”
Quantum, vol. 2, p. 79, 2018. [

——, “Quantum computing 40 years later,” arXiv:2106.10522, June
2021. 8]

L. K. Grover, “A fast quantum mechanical algorithm for database
search,” in STOC ’96: Proceedings of the twenty-eighth annual ACM
symposium on Theory of Computing. New York, NY, USA: Associ-
ation for Computing Machinery, Jul 1996, pp. 212-219. [§]

C. H. Bennett, E. Bernstein, G. Brassard, and U. Vazirani, “Strengths
and weaknesses of quantum computing,” SIAM J. Comput., vol. 26,
no. 5, pp. 15101523, 1997. [§

P. W. Shor, “Algorithms for quantum computation: discrete logarithms
and factoring,” in Proceedings 35th Annual Symposium on Foundations
of Computer Science. IEEE, Nov 1994, pp. 124-134. [§

A. Y. Kitaev, “Quantum measurements and the Abelian Stabilizer
Problem,” arXiv:quant-ph/9511026, Nov. 1995. [§]

A. W. Harrow, A. Hassidim, and S. Lloyd, “Quantum Algorithm for
Linear Systems of Equations,” Phys. Rev. Lett., vol. 103, no. 15, p.
150502, Oct 2009. [8]

R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining
digital signatures and public-key cryptosystems,” Communications of
the ACM, vol. 21, no. 2, pp. 120-126, 1978. Bl

R. P. Feynman, “Simulating physics with computers,” Int. J. Theor.
Phys., vol. 21, no. 6, pp. 467-488, Jun 1982. [§]

S. Lloyd, “Universal quantum simulators,” Science, vol. 273, pp. 1073—
1078, 1996. [8]

J. D. Whitfield, J. Biamonte, and A. Aspuru-Guzik, “Simulation
of electronic structure hamiltonians using quantum computers,” Mol.
Phys., vol. 109, no. 5, pp. 735-750, 2011. B

I. M. Georgescu, S. Ashhab, and F. Nori, “Quantum simulation,” Rev.
Mod. Phys., vol. 86, pp. 153-185, Mar 2014. [8]

B. Bauer, S. Bravyi, M. Motta, and G. K.-L. Chan, “Quantum algo-
rithms for quantum chemistry and quantum materials science,” Chem.
Rev., vol. 120, no. 22, pp. 12685-12 717, 2020. Bl

Y. Cao, J. Romero, J. P. Olson, M. Degroote et al., “Quantum
Chemistry in the Age of Quantum Computing,” Chem. Rev., vol. 119,
no. 19, pp. 10856-10915, Oct 2019. Bl 0]

A. Y. Kitaev, A. Shen, M. N. Vyalyi, and M. N. Vyalyi, Classical and
quantum computation. American Mathematical Soc., 2002, no. 47. Bl
9l

S. Gharibian, Y. Huang, Z. Landau, and S. W. Shin, “Quantum
hamiltonian complexity,” Found. Trends Theor. Comput. Sci., vol. 10,
no. 3, pp. 159-282, 2015. Bl B

J. Tilly, H. Chen, S. Cao, D. Picozzi et al., “The Variational
Quantum Eigensolver: a review of methods and best practices,”
arXiv:2111.05176, Nov. 2021.

M. Cerezo, A. Arrasmith, R. Babbush, S. C. Benjamin et al., “Varia-
tional quantum algorithms,” Nat. Rev. Phys., pp. 1-20, 2021. [§]

R. Orts, S. Mugel, and E. Lizaso, “Quantum computing for finance:
Overview and prospects,” Rev. Phys., vol. 4, p. 100028, 2019.

J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost ef al., “Quantum
machine learning,” Nature, vol. 549, pp. 195-202, Sep 2017.

A. Peruzzo, J. McClean, P. Shadbolt, M.-H. Yung ef al., “A variational
eigenvalue solver on a photonic quantum processor,” Nat. Commun.,
vol. 5, no. 1, pp. 1-7, 2014.

A. Kandala, A. Mezzacapo, K. Temme, M. Takita et al., “Hardware-
efficient variational quantum eigensolver for small molecules and
quantum magnets,” Nature, vol. 549, no. 7671, pp. 242-246, Sep 2017.
P. J. J. O’Malley, R. Babbush, I. D. Kivlichan, J. Romero et al.,
“Scalable Quantum Simulation of Molecular Energies,” Phys. Rev. X,
vol. 6, no. 3, p. 031007, Jul 2016. 0]

R. Ayanzadeh, J. Dorband, M. Halem, and T. Finin, “Multi-qubit
correction for quantum annealers,” Sci. Rep., vol. 11, no. 1, pp. 1-
12, 2021.

2022,


https://quantumalgorithmzoo.org/

[109]

[110]

[111]

[112]
[113]

[114]

[115]

[116]

J. M. Martyn, Z. M. Rossi, A. K. Tan, and I. L. Chuang, “Grand
unification of quantum algorithms,” PRX Quantum, vol. 2, no. 4, 2021.

G. H. Low and I. L. Chuang, “Hamiltonian simulation by qubitization,”
Quantum, vol. 3, p. 163, 2019. [IQ]

M. Szegedy, “Quantum speed-up of markov chain based algorithms,”
in 45th Annual IEEE Symposium on Foundations of Computer Science.
IEEE, 2004, pp. 32-41. [[0]

M. S. Anis et al., “Qiskit: An open-source framework for quantum
computing,” doii10.5281/zenodo.2573505] [Accessed: Jan 3, 2022]. (int|
“Amazon braket,” https://aws.amazon.com/braket/| [Accessed: Jan 7,
2022]. [

C. Albornoz, G. Alonso, P. A. M. Andrenkov, A. Asadi et al., “Xanadu
quantum codebook,” 2021, https://codebook.xanadu.ai| [Accessed: Jan
7,2022]. [

“qBraid: Cloud-based IDE for quantum computing,” https://qbraid.com
[Accessed: Jan 7, 2022]. [Tl

“Creative commons attribution 4.0 international (cc by 4.0),”
https://creativecommons.org/licenses/by/4.0/| [Accessed: Jan 7, 2022].

14


10.5281/zenodo.2573505
https://aws.amazon.com/braket/
https://codebook.xanadu.ai
https://qbraid.com
https://creativecommons.org/licenses/by/4.0/

	I Quantum technologies
	II Quantum theory
	II-A Quantum wave functions
	II-B Quantum states spaces compared to probability event spaces

	III Models of quantum computing
	IV Quantum primacy experiments
	V Quantum computing algorithms and applications
	V-A First wave quantum algorithms for ideal quantum devices
	V-B Second wave algorithms for noisy intermediate-scale quantum devices
	V-C The quantum singular value transformation framework

	VI Outlook
	VII Acknowledgements
	References

